The generator matrix 1 0 0 1 1 1 X 1 X^2+X 1 1 1 X^2 X^2+X X^2+X X^2 1 1 X^2 X^2+X 1 1 1 X^2+X 1 1 1 X 1 1 1 1 0 0 0 1 1 1 X 1 1 X^2 1 1 1 X^2+X X^2 X^2+X 1 0 1 X^2 X^2 X 1 X 0 1 1 X 1 0 1 1 1 0 1 1 X 1 0 1 0 X^2 X^2+1 1 1 0 0 X^2 X^2+1 1 1 1 X^2+X X X X+1 1 1 X^2+X X+1 X^2+X 1 X^2+X 1 X 1 X^2+1 X^2+X+1 X^2+X 1 1 X^2+X 1 X^2+X+1 X^2+X+1 1 1 X X^2+X+1 0 X^2 0 X^2+X+1 1 1 X X 1 X+1 1 1 X^2+X X+1 1 X X X^2 1 X^2+X+1 X^2 1 0 X 1 X^2 1 1 0 0 0 1 X^2+X+1 X+1 X^2 X^2+1 X 1 1 X^2+1 X^2+X X X+1 1 1 X X+1 X^2+1 X X^2+X+1 X^2 X^2+1 0 0 X+1 X^2+X+1 X^2+X X^2 1 X^2+X 1 X^2+X+1 1 X^2+1 X X^2+1 X 0 0 X^2 1 X^2+1 X^2+X X^2+X X^2+X+1 X^2+X 1 1 X+1 X^2+X X^2+X+1 X+1 X^2 X 1 X^2+X X^2+X X X^2+X+1 0 1 X^2+X+1 X+1 X^2 1 0 X^2+X X X^2+X generates a code of length 70 over Z2[X]/(X^3) who´s minimum homogenous weight is 68. Homogenous weight enumerator: w(x)=1x^0+276x^68+64x^70+123x^72+28x^76+19x^80+1x^88 The gray image is a linear code over GF(2) with n=280, k=9 and d=136. This code was found by Heurico 1.16 in 7.9 seconds.